Density of Ideal Lattices
نویسندگان
چکیده
The security of many efficient cryptographic constructions, e.g. collision-resistant hash functions, digital signatures, identification schemes, and more recently public-key encryption has been proven assuming the hardness of worst-case computational problems in ideal lattices. These lattices correspond to ideals in the ring Z[ζ], where ζ is some fixed algebraic integer. Under the assumption that this ring Z[ζ] is the maximal order of the number field Q(ζ), we show that the density of n-dimensional ideal lattices with determinant ≤ b among all lattices under the same bound is in O(b1−n) as b grows. So, for lattices of dimension > 1 with bounded determinant, the subclass of ideal lattices is always vanishingly small. Our assumption, though not valid for all algebraic integers ζ is certainly holds for all ζ that have been suggested for practical use.
منابع مشابه
T-Rough Sets Based on the Lattices
The aim of this paper is to introduce and study set- valued homomorphism on lattices and T-rough lattice with respect to a sublattice. This paper deals with T-rough set approach on the lattice theory. The result of this study contributes to, T-rough fuzzy set and approximation theory and proved in several papers. Keywords: approximation space; lattice; prime ideal; rough ideal; T-rough set; set...
متن کاملIdeal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملRandom Ensembles of Lattices from Generalized Reductions
We propose a general framework to study constructions of Euclidean lattices from linear codes over finite fields. In particular, we prove general conditions for an ensemble constructed using linear codes to contain dense lattices (i.e., with packing density comparable to the Minkowski-Hlawka lower bound). Specializing to number field lattices, we obtain a number of interesting corollaries for i...
متن کامل